В чем заключается сущность универсального метода сечения. Силовые факторы в методе сечений. Внутренние силы. Метод сечений

Внутри любого материала имеются внутренние междуатомные силы, наличие которых определяет способность тела воспринимать действующие на него внешние силы, сопротивляться разрушению, изменению формы и размеров. Приложение к телу внешней нагрузки вызывает изменение внутренних сил. В сопротивлении материалов изучаются дополнительные внутренние силы. В сопротивлении материалов они называются просто внутренними силами.

Внутренние силы – силы взаимодействия между отдельными элементами конструкций или между отдельными частями элемента, возникающие под действием внешних сил.

Чтобы численно установить величину внутренних сил пользуются методом сечений.

Метод сечений сводится к четырем действиям:

Рис. 7

    Отбрасывают любую отрезанную часть тела (желательно наиболее сложную), а ее действие на оставшуюся часть заменяют внутренними силами, чтобы оставшаяся исследуемая часть находилась в равновесии (рис.8);

Рис. 8

Полученные силы (N, Qy, Qz) (рис. 9) и моменты (Мк, Мy, Mz) называют внутренними силовыми факторами в сечении

Рис. 9

Для внутренних силовых факторов приняты следующие названия:

-продольная или осевая сила;

и-поперечные силы ;

-крутящий момент ;

и
-изгибающие моменты .

    Находят внутренние силовые факторы, составляя шесть уравнений равновесия статики для рассматриваемой части рассеченного тела.

Напряжение

Если в сечении выделить бесконечно малую площадку
и предположить, что внутренние силы, приложенные к его различным точкам, одинаковы по величине и направлению, то равнодействующая их
будет проходить через центр тяжести элемента
(рис. 10).

Рис. 10

Проекциями
на оси,ибудут элементарная продольная сила
, и элементарные поперечные силы
и
.

Разделим эти элементарные силы на площадь
, получим величины, называемые напряжениями в точке проведенного сечения.

;
;
,

где - нормальное напряжение;- касательное напряжение.

Напряжение – внутренняя сила, отнесенная к единице площади в данной точке рассматриваемого сечения.

Напряжение измеряется в единицах напряжения - паскалях (Па) и кратных ему – (кПа, МПа)

Иногда кроме нормальных и касательных напряжений рассматривают еще и полное напряжение

Понятие «напряжение » играет очень важную роль в расчетах на прочность. Поэтому значительная часть курса сопротивления материалов отводится изучению способов вычисления напряженийи.

Растяжение и сжатие

Центральным растяжением (сжатием) называется такой вид деформации, при котором в поперечном сечении бруса возникает только продольная сила (растягивающая и сжимающая) а все остальные внутренние силовые факторы равны нулю.

Продольные силы определяются с помощью метода сечений.

Пример

Пусть имеется ступенчатый стержень, нагруженный силами
,
и
вдоль оси стержня, показанного на рис. 11, а. Определить величину продольных сил.

Решение . Стержень может быть разделен на участки по местам приложения нагрузок и по местам изменения поперечного сечения.

Первый участок ограничен точками приложения сил и. Направим ось(начало первого участка). Мысленно рассечем первый участок поперечным сечением на расстоянииот начала первого участка. Причем координатаможет быть взята в интервале
, где- длина первого участка.


;
, кН

Положительный знак продольной силы говорит о том, что первый участок растянут.

Значение продольной силы не зависит от координаты , поэтому на всем участке значение продольной силы постоянно и равно.

Рис. 11

Второй участок ограничен точками приложения сил и. Направим осьвдоль оси участка вверх с началом координат в точке приложения силы(начало второго участка).

Мысленно рассечем второй участок поперечным сечением на расстоянии от начала второго участка. Причем координатаможет быть взята в интервале
, где- длина второго участка.

Рассмотрим равновесие нижней части стержня, заменив действие верхней части на нижнюю часть стержня продольной силой
, предварительно направив ее в сторону растяжения рассматриваемой части.

Из условия равновесия статики:


;

Знак минус говорит о том, что второй участок сжат.

Аналогично для третьего участка:

;

Полученные результаты для большей наглядности удобней представить в виде графика (эпюры N ), показывающего изменение продольной силы вдоль оси стержня. Для этого проводим нулевую (базовую) линию параллельно оси стержня, перпендикулярно которой будем в масштабе откладывать значения осевых усилий (рис.1.11, д). В одну сторону откладываем положительные значения, в другую - отрицательные. Эпюра заштриховывается перпендикулярно нулевой линии, а в нутрии эпюры ставится знак откладываемой величины. Рядом указываются значения откладываемых величин. Рядом с эпюрой в кавычках указывается название эпюры («N») и через запятую - единицы измерения (кН)

Все материалы, элементы конструкций и конструкции под действием внешних сил в той или иной мере испытывают смещения (перемещения относительно нагруженного состояния) и изменяют свою форму (деформируются). Взаимодействие между частями (частицами) внутри элемента конструкции характеризуется внутренними силами.

Внутренние силы − силы межатомного взаимодействия, возникающие при воздействии на тело внешних нагрузок и стремящиеся противодействовать деформации.

Для расчета элементов конструкций на прочность, жесткость и устойчивость необходимо с помощью метода сечений определить возникающие внутренние силовые факторы.

Суть метода сечений заключается в том, что внешние силы, приложенные к отсеченной части тела, уравновешиваются внутренними силами, возникающими в плоскости сечения и заменяющими действие отброшенной части тела на остальную.

Стержень, находящийся в равновесии под действием сил F 1 , F 2 , F 3 , F 4 , F 5 (рис. 86, а ), мысленно рассечем на две части I и II (рис. 86, б ) и рассмотрим одну из частей, например левую.

Так как связи между частями устранены, то действие одной из них на другую следует заменить системой внутренних сил в сечении. Поскольку действие равно противодействию и противоположно по направлению, то внутренние силы, возникающие в сечении, уравновешивают внешние силы, приложенные к оставленной части.

Поместим в точку О систему координат xyz . Разложим главный вектор и главный момент на составляющие, направленные по координатным осям:

Составляющая N z - называемая продольной (нормальной) силой, вызывает деформацию растяжения или сжатия. Составляющие Q x и Q y перпендикулярны нормали и стремятся сдвинуть одну часть тела относительно другой, их называют поперечными силами. Моменты M x и M y изгибают тело и называются изгибающими . Момент M z скручивающий тело называют крутящим . Эти силы и моменты, являются внутренними силовыми факторами (рис. 86, в ).

Отыскать составляющие главного вектора и главного момента внутренних сил позволяют условия равновесия:



В частных случаях отдельные внутренние силовые факторы могут быть равны нулю. Так, при действии плоской системы сил (например, в плоскости zy ) в его сечениях возникают силовые факторы: изгибающий момент M x , поперечная сила Q y , продольная сила N z . Условия равновесия для данного случая:

Для определения внутренних силовых факторов необходимо:

1. Мысленно провести сечение в интересующей нас точке конструкции или стержня.

2. Отбросить одну из отсеченных частей и рассмотреть равновесие оставленной части.

3. Составить уравнения равновесия для оставленной части и определить из них значения и направления внутренних силовых факторов.

Внутренние силовые факторы, возникающие в поперечном сечении стержня, определяют деформированное состояние.

Метод сечений не позволяет установить закон распределения внутренних сил по сечению.

Эффективными характеристиками для оценки нагруженности деталей будет интенсивность внутренних сил взаимодействия - напряжение и деформация .

Рассмотрим сечение тела (рис. 87). На основании принятого ранее допущения о том, что рассматриваемые тела сплошные, можно считать, что внутренние силы непрерывно распределены по всему сечению.

В сечении выделим элементарную площадку ΔА , а равнодействующую внутренних сил на этой площадке обозначим ΔR . Отношение равнодействующей внутренних сил ΔR на площадке ΔА к величине площади этой площадки называется средним напряжением на данной площадке,

Если площадку ΔА уменьшать (стягивать в точку), то в пределе получим напряжение в точке

.

Силу ΔR можно разложить на составляющие: нормальную ΔN и касательную ΔQ. По этим составляющим определяют нормальное σ и касательное τ напряжения (рис. 88):

Для измерения напряжений в Международной системе единиц (СИ) служит ньютон на квадратный метр, названный паскалем Па (Па = Н/м 2). Так как эта единица очень мала и пользоваться ею неудобно, применяют кратные единицы (кН/м 2 , МН/м 2 и Н/мм 2). Отметим, что 1 МН/м 2 =1МПа =1Н/мм . Эта единица наиболее удобна для практического использования.

В технической системе единиц (МКГСС) для измерения напряжений применяли килограмм-силу на квадратный сантиметр. Соотношение между единицами измерения напряжений в Между­народной и технической системах устанавливается на основе соотношения между единицами сил: 1 кгс = 9,81 Н 10 Н. Приближенно можно считать: 1 кгс/см 2 = 10 Н/см 2 = 0,1 Н/мм 2 = 0,1 МПа или 1 МПа = 10 кгс/см 2 .

Нормальные и касательные напряжения являются удобной мерой оценки внутренних сил тела, так как материалы различным образом им сопротивляются. Нормальные напряжения стремятся сблизить или удалить отдельные частицы тела по направлению нормали к плоскости сечения, а касательные напряжения стремятся сдвинуть одни частицы тела относительно других по плоскости сечения. Поэтому касательные напряжения называют еще напряжениями сдвига.

Деформация нагруженного тела сопровождается изменением расстояний между его частицами. Внутренние силы, возникающие между частицами, изменяются под действием внешней нагрузки до тех пор, пока не установится равновесие между внешней нагрузкой и внутренними силами сопротивления. Полученное состояние тела называют напряженным состоянием. Оно характеризуется совокупностью нормальных и касательных напряжений, действующих по всем площадкам, которые можно провести через рассматриваемую точку. Исследовать напряженное состояние в точке тела - значит получить зависимости, позволяющие определить напряжения по любой площадке, проходящей через указанную точку.

Напряжение, при котором происходит разрушение материала или возникают заметные пластические деформации, называют предельным и обозначают σ пред; τ пред. . Эти напряжения определяют опытным путем.

Чтобы избежать разрушения элементов сооружений или машин, возникающие в них рабочие (расчетные) напряжения (σ, τ) не должны превышать допускаемых напряжений, которые обозначают в квадратных скобках: [σ], [τ]. Допускаемые напряжения - это максимальные значения напряжений, обеспечивающие безопасную работу материала. Допускаемые напряжения назначаются как некоторая часть экспериментально найденных предельных напряжений, определяющих исчерпание прочности материала:

где [n ] - требуемый или допускаемый коэффициент запаса прочности, показывающий, во сколько раз допускаемое напряжение должно быть меньше предельного.

Коэффициент запаса прочности зависит от свойств материала, характера действующих нагрузок, точности применяемого метода расчета и условий работы элемента конструкции.

Под действием сил возникают смещения не только в конструкции, но и в материале, из которого она изготовлена (хотя во многих случаях такие перемещения находятся далеко за пределами возможностей невооруженного глаза и обнаруживаются с помощью высокочувствительных датчиков и приборов).

Для определения деформаций в точке К рассмотрим малый отрезок KL длиной s , исходящий из этой точки в произвольном направлении (рис. 89).

В результате деформации точки К и L переместятся в положение К 1 и L 2 соответственно, а длина отрезка, возрастет на величину Δs. Отношение

представляет собой среднее удлинение на отрезке s.

Уменьшая отрезок s , приближая точку L к точке К , в пределе получим линейную деформацию в точке К по направлению KL :

Если в точке К провести три оси параллельные осям координат, то линейные деформации в направлении координатных осей х , у и z будут равны соответственно ε x , ε y , ε z .

Деформация тела является безразмерной и часто выражается в процентах. Обычно деформации невелики и в условиях упругости не превышают 1 − 1,5 %.

Рассмотрим прямой угол, образованный в недеформированном теле отрезками ОМ и ON (рис. 90). В результате деформации под действием внешних сил угол MON изменится и станет равным углу M 1 O 1 N 1 . В пределе разность углов называют угловой деформацией или деформацией сдвига в точке О в плоскости MON :

В координатных плоскостях угловые деформации или углы сдвига обозначаются: γ xy , γ yx , γ xz .

В любой точке тела имеют место три линейных и три угловых компонента деформации, которые определяют деформированное состояние в точке.

Внутренние силы. Метод сечений

Внешние силы, действующие на реальный объект, чаще всего известны. Обычно необходимо определить внутренние силы (результат взаимодействия между отдельными частями данного тела) которые неизвестны по величине и направлению, но знание которых необходимо для прочностных и деформационных расчетов. Определение внутренних сил осуществляется с помощью так называемого метода сечений , сущность которого заключается в следующем:

    Мысленно разрезают тело по интересующему нас сечению.

    Отбрасывают одну из частей (независимо какую).

    Заменяют действие отброшенной части тела на оставшуюся системой сил, которые в данном случае переходят в разряд внешних. Силы упругости по принципу действия и противодействия всегда взаимны и представляют непрерывно распределенную по сечению систему сил. Их значение и ориентация в каждой точке сечения произвольны, зависят от ориентации сечения относительно тела, величины и направления внешних сил, геометрических размеров тела. Внутренние силы можно привести к главному векторуR и главному моменту М. За точку приведения обычно принимают центр тяжести сечения. Выбрав систему координат Х, У, Z (Z – продольная ось по нормали к поперечному сечению, Х и У – в плоскости этого сечения) и начало системы в центре тяжести, обозначим проекции главного вектора R на координатные оси через N, Q x , Q y , а проекции главного момента М – М х, М у, М k . Эти три силы и три момента называют внутренними силовыми факторами в сечении :

N – продольная сила,

Q x , Q y – поперечные силы,

M k – крутящий момент,

M x , M y – изгибающие моменты.

4. Так как внутренние силы находятся в равновесии с внешними силами, они могут быть определены из уравнений равновесия статики:

Р z =0, P y =0, P x =0,

 M x =0, M y =0, M z =0.

Любой внутренний силовой фактор в сечении равен алгебраической сумме соответствующих внешних силовых факторов, действующих с одной стороны от сечения.

Внутренний силовой фактор в сечении численно равен интегральной сумме соответствующих элементарных внутренних сил или моментов по всей площади сечения:

Классификация основных видов нагружения связана с внутренним силовым фактором, возникающим в сечении. Так, если в поперечных сечениях возникает только продольная сила N, а другие внутренние силовые факторы обращаются в нуль, то на этом участке имеет место растяжение или сжатие, в зависимости от направления силы N. Нагружение, когда в поперечном сечении возникает только поперечная сила Q, называют сдвигом.

Если в поперечном сечении возникает только крутящий момент М к, то стержень работает на кручение. В случае, когда от внешних сил, приложенных к стержню возникает только изгибающий момент М х (или М у), то такой вид нагружения называют чистым изгибом в плоскости уz (или xz). Если в поперечном сечении наряду с изгибающим моментом (например, М х) возникает поперечная сила Q y , то такой вид нагружения называют плоским поперечным изгибом (в плоскости yz). Вид нагружения, когда в поперечном сечении стержня возникают только изгибающие моменты М х и М у, называют косым изгибом (плоским или пространственным). При действии в поперечном сечении нормальной силы N и изгибающих моментов М х и М у возникает нагружение, называемое сложным изгибом с растяжением сжатием или внецентренным растяжением (сжатием). При действии в сечении изгибающего момента и крутящего момента возникает изгиб с кручением.

Общим случаем нагружения называют случай, когда в поперечном сечении возникают все шесть внутренних силовых факторов.

К особым видам нагружения следует отнести смятие, когда деформация носит местный характер, не распространяясь на всё тело и продольный изгиб (частный случай общего явления потери устойчивости).

Понятие о напряжениях

Величина внутренних силовых факторов не отражает интенсивности
напряженного состояния тела, близости к опасному состоянию (разрушению). Для оценки интенсивности внутренних сил вводится критерий (числовая мера), называемый напряжением. Если в поперечном сечении F некоторо-го тела выделим элементарную пло-щадку F, рис.1.1, в пределах которой выявлена внутрен-няя сила R, то за среднее напряжение на площадке F может быть принято отношение:

Истинное напряжение в точке можно определить, уменьшая площадку:

Векторная величина р представляет собой полное напряжение в точке. Размерность напряжения принима-ется в Па (Паскаль) или МПа (Мегапас-каль). Полное напря-жение обычно в расчетах не применя-ется, а определяется его нормальная к сечению составля-ющая  - нормальное напряжение, и каса-тельные   ,   – касательные напряжения (рис.1.2). Полные напряжения, приходящиеся на единицу площади, можно выразить через нормальные и касательные напряжения:

Между действующими напряжениями и внутренними силовыми факторами существует следующая связь:

;

Нормальные и касательные напряжения являются функцией внутренних силовых факторов и геометрических характеристик сечения. Эти напряжения, вычисленные по соответствующим формулам, можно назвать фактическими или рабочими.

Наибольшее значение фактических напряжений ограничено предельным напряжением, при котором материал разрушается или появляются недопустимые пластические деформации. Первая из этих границ существует у любого хрупкого материала и называется пределом прочности ( в,  в), вторая имеет место только у пластичных материалов и называется пределом текучести ( т,  т). При действии циклически изменяющихся напряжениях разрушение происходит при достижении так называемого предела выносливости ( R ,  R), значительно меньшего, чем соответствующие пределы прочности.

Внутренние силы возникают между отдельными элементами сооружения и между отдельными частями элемента под действием внешних сил. Определение внутренних сил производят методом сечений. Сущность его заключается в том, что тело, находящееся в равновесии (рис.2.1,а ), рассекают мысленно на две части (рис.2.1,б ), отбрасывают одну из частей, заменяя влияние отброшенной части внутренними силами, и составляют уравнения равновесия для оставшейся части, на которую действуют приложенные к ней внешние силы и подлежащие определению внутренние силы, распределенные по сечению.

Обычно плоскость сечения проводится перпендикулярно касательной к оси бруса. Систему внутренних сил можно привести к одной силе R и к одной паре М .Выберем в качестве центра приведения сил центр тяжести сечения 0 и

направим ось Оx правой прямоугольной системы координат перпендикулярно сечению в сторону внешней нормали. Разложим векторы R и M на составляющие (рис. 2.1,в ). Силу N , направленную по касательной к оси стержня, называют продольной силой. Силы Q y и Q z , направленные по нормали к оси стержня, называют поперечными силами. Момент Т относительно оси х называют крутящим. Моменты М y и M z носят название изгибающих. Эти шесть внутренних усилий могут быть найдены из шести уравнений равновесия тела в пространстве, составленных для рассматриваемой части бруса. Уравнения составляются применительно к недеформированному телу, если наблюдаются малые изменения его размеров и формы. Принятие такого допущения значительно упрощает задачу, уравнения становятся линейными, что позволяет пользоваться принципом независимости действия сил (принципом наложения). Последний гласит, что результат совместного воздействия на тело системы сил равен сумме частных результатов воздействия каждой силы в отдельности.

Каждому из внутренних усилий соответствует свой вид деформирования тела: N − растяжение (сжатие), Q y и Q z − сдвиг, Т − кручение, М у и М z − изгиб. Эти деформации, как правило, возникают в различных сочетаниях. Продольная сила считается положительной, если ее направление совпадает с направлением внешней нормали к сечению. Крутящий момент принимается положительным, если при взгляде в торец отсеченной части бруса со стороны его внешней нормали он представляется направленным по ходу часовой стрелки. Изгибающий момент считается положительным, когда на левом торцe правой части бруса он направлен по ходу часовой стрелки, а на правом торце левой части − против хода часовой стрелки. Поперечная сила положительна, если она стремится вращать отсеченную часть бруса (на которую она действует) по ходу часовой стрелки относительно любой точки на внутренней нормали к сечению. Положительные знаки усилий показаны на рис.2.2.

При определении знаков внутренних усилий в вертикальных брусьях необходимо какой-то конец бруса (нижний или верхний) принимать в качестве левого и отмечать его на чертеже каким-либо значком.

Силы, как известно, бывают внешние и внутренние . Если взять в руки обычную ученическую линейку и изогнуть ее, то делаем мы это, прикладывая внешние силы – руки. Если усилие рук убрать, то линейка вернется в исходное положение самостоятельно, под воздействием своих внутренних сил (это силы взаимодействия между частицами элемента от воздействия внешних сил). Чем больше внешние силы, тем больше и внутренние, но внутренние не могут постоянно увеличиваться, они растут лишь до определенного предела, и когда внешние силы превысят внутренние, произойдет разрушение . Поэтому крайне важно знать о внутренних силах в материале с точки зрения его прочности. Внутренние силы определяются с помощью метода сечений . Рассмотрим его подробно. Допустим, стержень нагружен некоторыми силами (верхний левый рис.). Разрезаем стержень сечением 1–1 на две части, и будем рассматривать любую из них – ту, которая покажется нам проще. К примеру, отбрасываем правую часть и рассмотрим равновесие левой части (верхний правый рис.).

Действие отброшенной правой части на оставшуюся левую заменяем внутренними силами, их бесконечно много, так как это силы взаимодействия между частицами тела. Из теоретической механики известно, что любую систему сил можно заменить эквивалентной ей системой, состоящей из главного вектора и главного момента. Поэтому все внутренние силы приведем к главному вектору R и главному моменту М (рис.1.1,б). Поскольку наше пространство трехмерно, то главный вектор R можно разложить по осям координат и получить три силы — Q x , Q y , N z (рис.1.1,в). По отношению к продольной оси стержня силы Q x , Q y называются поперечными или перерезывающими силами (расположены поперек оси), N z получил название продольной силы (расположена вдоль оси).

Главный момент М при разложении по осям координат также даст три момента(рис.1.1,г) в соответствии с той же продольной осью — два изгибающих момента M x и M y и крутящий момент Т (может обозначаться как М к или М z).

Таким образом, в общем случае нагружения существует шесть компонентов внутренних сил , которые называются внутренними силовыми факторами или внутренними силами. Для их определения в случае пространственной системы сил составляются шесть уравнений равновесия , а в случае плоской – три.

Чтобы запомнить последовательность метода сечений, следует использовать мнемотехнический прием – запомнить слово РОЗУ из первых букв действий: Р азрезаем (сечением), О тбрасываем (одну из частей), З аменяем (действие отброшенной части внутренними силами), У равновешиваем (т.е. с помощью уравнений равновесия определяем значение внутренних сил).

В практике возникают следующие виды деформаций. Если при случае нагружения в элементе под действием сил возникает один внутренний силовой фактор, то такая деформация называется простой или основной. Простые деформации - это растяжение-сжатие (возникает продольная сила), сдвиг (поперечная сила), изгиб (изгибающий момент), кручение (крутящий момент). Если одновременно элемент испытывает несколько деформаций (кручение с изгибом, изгиб с растяжением и др.), то такая деформация называется сложной .

Поделиться